
docker_instructions.md 5/23/2020

1 / 6

Custom docker images for AML Pipelines
This is a basic guide with steps on how to create your custom docker image with your preferred libraries and
use it for running your AML pipeline workloads.

Prerequisites
Docker Cli
Azure Cli

Create a docker file
You can create your own docker file using one of the base AzureML images listed in Microsoft
Container Registry(MCR) as reference, depending on your ML workload (CPU/GPU etc.). For this guide
we will be using Azureml Base.

We would need to install all the necessary drivers in our custom image that are not shipped with the
mcr base image. In this specific example we want to write stuff to Azure SQL database from a python
script, possibly using the pandas library so we need two packages and their associated drivers - pyodbc
for writing to DB and sqlalchemy to enable pandas database operations and simpler DB syntax instead
of cursors. You dockerfile should should therefore look like this:

pull base image from Microsoft Container Registry
FROM mcr.microsoft.com/azureml/base:latest

apt-get and system utilities
RUN apt-get update && apt-get install -y \
 curl apt-transport-https debconf-utils \
 && rm -rf /var/lib/apt/lists/*

adding custom MS repository
RUN curl https://packages.microsoft.com/keys/microsoft.asc | apt-key add -
RUN curl https://packages.microsoft.com/config/ubuntu/16.04/prod.list >
/etc/apt/sources.list.d/mssql-release.list

install SQL Server drivers and tools
RUN apt-get update && ACCEPT_EULA=Y apt-get install -y msodbcsql17 mssql-
tools
RUN echo 'export PATH="$PATH:/opt/mssql-tools/bin"' >> ~/.bashrc
RUN /bin/bash -c "source ~/.bashrc"

RUN apt-get -y install locales
RUN locale-gen en_US.UTF-8
RUN update-locale LANG=en_US.UTF-8

RUN apt-get install -y --reinstall build-essential

RUN apt-get install -y unixodbc-dev

https://docs.docker.com/get-docker/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://hub.docker.com/publishers/microsoftowner
https://hub.docker.com/_/microsoft-azureml-base?tab=description

docker_instructions.md 5/23/2020

2 / 6

python stuff not shipped with base mcr image
RUN pip install pyodbc
RUN pip install sqlalchemy

CMD /bin/bash

Place the dockerfile into its own folder. We will use this folder as the context path for the next section.

Start your command shell in the folder with our dockerfile

Build container image
We will use docker build to create a new image named amlodbc with tag 1.0 using the supplied
dockerfile as input and using current directory as build context. Note the '.' at the end of the
command, specifying current directory as the docker context path.

docker build -f dockerfile -t amlodbc:1.0 .

To see a list of containers, use command docker images. You will notice the base mcr image that we
pulled as well as our new amlodbc image:

Push image to Azure Container Registry
Go to azure portal and navigate to the resource group that has your workspace. Along with your AML
workspace and default storage accounts, you'll see an item of type "Container Registry". If there are
more than one registry resources you can select any one to register your image to. Lets select
acrodbcdemo here:

https://docs.docker.com/engine/reference/commandline/build/

docker_instructions.md 5/23/2020

3 / 6

Note the login server name from the registry details. It is usually of the form
[registry_name].azurecr.io. In our case it will be acrodbcdemo.azurecr.io as can be seen in the
below screenshot:

Now we use docker tag to add ACR tag to our image:

docker tag amlodbc:1.0 acrodbcdemo.azurecr.io/amlodbc:1.0

If you run docker images again you will see a new entry. Note how it has the same image id as
amlodbc:

https://docs.docker.com/engine/reference/commandline/tag/

docker_instructions.md 5/23/2020

4 / 6

Next, we log into our container registry using az acr login

az acr login --name acrodbcdemo

Now we push to ACR using docker push

docker push acrodbcdemo.azurecr.io/amlodbc:1.0

If everything went well, you should now see amlodbc appear as a new repository in azure portal:

Use the custom docker image in your AML pipeline
Make sure your private ACR has 'Admin user' enabled under its Access keys section for this method to
work

https://docs.microsoft.com/en-us/cli/azure/acr?view=azure-cli-latest#az-acr-login
https://docs.docker.com/engine/reference/commandline/push/

docker_instructions.md 5/23/2020

5 / 6

Your custom docker image can be specified as a ContainerRegistry and passed to your pipeline step.

Use a RunConfiguration to specify some additional requirements for this
step.
from azureml.core.runconfig import RunConfiguration
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.container_registry import ContainerRegistry

create a new runconfig object
run_config = RunConfiguration()

enable Docker
run_config.environment.docker.enabled = True

you can also point to an image in a private ACR
image_registry_details = ContainerRegistry()
image_registry_details.address = "acrodbcdemo.azurecr.io"
image_registry_details.username = "acrodbcdemo" # username is same as
registry name
image_registry_details.password = "<password>" # use any one of the two
passwords shown in portal
run_config.environment.docker.base_image_registry = image_registry_details

this is an image in the image_registry
image_name = 'amlodbc:2.0'
run_config.environment.docker.base_image = image_name

don't let the system build a new conda environment
run_config.environment.python.user_managed_dependencies = True

specify CondaDependencies obj
run_config.environment.python.conda_dependencies =
CondaDependencies.create(conda_packages=['pyodbc','sqlalchemy'])

docker_instructions.md 5/23/2020

6 / 6

For this step, we use yet another source_directory that contains only the
things that need to be sent to our compute
source_directory = './steps'
print('Source directory for the step is
{}.'.format(os.path.realpath(source_directory)))

sql_demo_step = PythonScriptStep(name="sql_step",
 script_name="pyodbc_pipeline_step.py",
 compute_target=aml_compute,
 source_directory=source_directory,
 runconfig=run_config)

print("sql_demo_step created")

Further Reading
Dockerfile reference
Microsoft ODBC driver installation guide for Linux
Microsoft Container Registry github
AML containers repository
Estimator demo with custom docker images
Distributed CNTK using custom docker images

https://docs.docker.com/engine/reference/builder/
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15#ubuntu17
https://github.com/microsoft/ContainerRegistry
https://github.com/Azure/AzureML-Containers
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/how-to-use-estimator.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/distributed-cntk-with-custom-docker/distributed-cntk-with-custom-docker.ipynb

